Theoretical investigation of the electronic asymmetry of the special pair cation radical in the photosynthetic type-II reaction center.

نویسندگان

  • Hideki Yamasaki
  • Yu Takano
  • Haruki Nakamura
چکیده

The electronic asymmetry of the special pair cation radical in the photosynthetic reaction center was studied, using density functional calculations with a polarizable continuum model and a point charge model as the protein environment. The calculated spin density distribution between the halves of the special pair from Rhodobacter sphaeroides agreed well with the experimental value due to the protein polarity effect. The differences in the specific orientations of the ester carbonyl groups of the phytyl groups, as well as the methyl ester groups, are one of the origins of the electronic asymmetry. The orientations of these groups are specific, as revealed by the 14 recent X-ray structures of a variety of type-II reaction centers, with a few exceptions. In addition to the spin density distributions of the special pair cation radical from other species, the structural features of the protein surrounding these groups of a variety of type-II reaction centers were investigated to elucidate the generality and mechanisms of the specific orientations of the groups by a structural alignment and a multiple sequence alignment. The determining factors of the electronic asymmetry among type-II reaction centers are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intervalence Band Stark Effect of the Special Pair Radical Cation in Bacterial Photosynthetic Reaction Centers

The Stark spectrum of the intervalence band of the special pair radical cation in bacterial photosynthetic reaction centers is presented. This spectrum, centered at 2600 cm-1, is modeled using a general treatment of intervalence band Stark effects based on a two-state vibronic coupling model of mixed-valency. The observed line shape can be predicted using values for the electronic coupling, dri...

متن کامل

Charge delocalization in the special-pair radical cation of mutant reaction centers of Rhodobacter sphaeroides from Stark spectra and nonadiabatic spectral simulations.

Stark and absorption spectra for the hole-transfer band of the bacteriochlorophyll special pair in the wild-type and L131LH, M160LH, and L131LH/M160LH mutants of the bacterial reaction center of Rhodobacter sphaeroides are presented, along with extensive analyses based on nonadiabatic spectral simulations. Dramatic changes in the Stark spectra are induced by the mutations, changes that are read...

متن کامل

Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy.

The electronic absorption line shape and Stark spectrum of the lowest energy Q(y)() transition of the special pair in bacterial reaction centers contain a wealth of information on mixing with charge transfer states and electronic asymmetry. Both vary greatly in mutants that perturb the chemical composition of the special pair, such as the heterodimer mutants, and in mutants that alter interacti...

متن کامل

Mechanism and Unidirectionality of the Electron Transfer in the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: SAC-CI Theoretical Study

The electronic mechanism and the origin of the unidirectionality of the electron transfer from photoexcited special pair to bacteriopheophytin in the photosynthetic reaction center (PSRC) of Rhodopseudomonas (Rps) Viridis are studied theoretically by using the SAC(symmetry adapted cluster)-CI (configuration interaction) method. The effects of the surrounding proteins are considered by using the...

متن کامل

Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 2. Heterodimer Special Pair

Ultrafast singlet excited state energy transfer occurs from the monomeric chromophores to the primary electron donor or special pair in photosynthetic reaction centers. The mechanism of this process has been investigated using reaction centers whose special pair absorption is severely perturbed by removal of the Mg atom of one of the bacteriochlorophylls (the heterodimer mutant (M)H202L). This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 112 44  شماره 

صفحات  -

تاریخ انتشار 2008